Происхождение эукариот
А. В. Марков, А. М. Куликов. Происхождение эукариот как результат интеграционных процессов в микробном сообществе (иллюстрированный доклад)
ЗАЧЕМ? Появление эукариотической клетки является вторым по значимости (после зарождения самой жизни) событием биологической эволюции. Важнейшее отличие эукариотических организмов от прокариотических состоит в более совершенной системе регуляции генома (именно в этом смысл появления клеточного ядра: область активного метаболизма – цитоплазма – отделилась от области хранения, считывания, репликации генетической информации и, главное, регуляции транскрипции и посттранскрипционных модификаций РНК). Благодаря этому резко возросла приспособляемость одноклеточных организмов, их способность адаптироваться к меняющимся условиям БЕЗ внесения наследственных изменений в геном, т.е. оставаясь "самими собой". Рост приспособляемости, устойчивости живых систем – основной закон биологической эволюции; в Фанерозое, например, он проявляется в закономерном и неуклонном росте средней продолжительности существования родов (см. об этом наш обзор и статью А.Маркова). Именно благодаря возможности адаптироваться, т.е. изменяться в зависимости от внешних условий, эукариоты смогли стать многоклеточными: ведь в многоклеточном организме клетки с одним и тем же геномом, в зависимости от условий, образуют совершенно разные как по морфологии, так и по функции ткани. |
Фотоальбом "Одноклеточные эукариоты"
Марков А.В. Ядро земное и ядро клеточное: что между ними общего? (популярная статья)
В.В.Малахов. Основные этапы эволюции эукариотных организмов. 2003.
М. А. Федонкин. Сужение геохимического базиса жизни и эвкариотизация биосферы: причинная связь. 2003.
С. В. Шестаков. О ранних этапах биологической эволюции с позиции геномики. 2003.
Марков А.В. Проблема происхождения эукариот
О происхождении эукариот. Из популярной книги А.Ю.Журавлева.
Г.А.Заварзин. Эволюция микробных сообществ.
Рассуждения А.С.Раутиана (из
комментариев к кн. Тейяра де Шардена " "Разделение организма на сому и герму обусловлено прежде всего тем, что задачи хранения наследственной информации и функционирования предъявляют к своей материальной основе противоположные требования. Любая динамика понижает устойчивость гермы и содержащейся в ней наследственной информации (книга лучше всего сохраняется, если ее не читают). Все живые системы принципиально динамичны. Находясь вдали от состояния термодинамического равновесия, они поддерживают свои существенные параметры благодаря постоянному обмену веществм и энергией с внешней средой. Иными словами, для поддержания сомы необходима динамика, а для сохранения гермы с ее наследственной информацией - покой. Компромисс между этими противоположными требованиями достигается путем пространственного разделения сомы и гермы внутри организма"
А.Ю.Розанов, М.А.Федонкин. Проблема первичного биотопа эвкариот. 1994.
Симбиоз. "Блочный" принцип сборки живых систем. См. об этом в нашем обзоре "Проблема эволюционных новообразований".
Тут есть о чем подумать и в философском плане. Мы свыклись с мыслью о том, что произошли от обезьяны. Обезьяна - зверь, нам близкий и понятный. Сложнее, но все-таки можно представить, что мы произошли от бактерии. Какой-никакой, а все же организм, клетка, что-то конкретное и осязаемое. Но нам становится жутковато, когда мы пытаемся осознать следующую истину в ее неприкрытой бесчеловечности. Наш предок - сообщество бактерий. Мы произошли от кишащей массы разных мельчайших тварей, постепенно сливавшихся в единый организм...
|
КОГДА И ПОЧЕМУ? Этот крупнейший ароморфоз произошел, по-видимому, не позднее, чем 2,6 – 2,7 млрд. лет назад, на рубеже Архея и Протерозоя (это определили по биомаркерам – остаткам хим. соединений, свойственных только эукариотам, см. наш обзор "древнейшие следы жизни"). Появление эукариот (точнее, тот момент, когда их присутствие становится заметным в летописи) совпадает по времени с самой крупной за всю историю Земли геофизической перестройкой. Первопричиной этой перестройки, по одной из последних моделей, стало выделение у Земли железного ядра, которое привело к целому комплексу последствий: исключительно сильным конвективным течениям в мантии, образованию "Моногеи" (единого континента), максимуму тектонической активности, смене тектоники тонких базальтовых пластин тектоникой литосферных плит, резкому снижению CO2 в атмосфере и резкому похолоданию (кислород в атмосфере стал накапливаться гораздо позже). Такие катастрофические события могли способствовать развитию эукариот двумя способами. Во-первых, они не могли не привести к разрушению, хотя бы частичному, сложившихся ранее прокариотных сообществ, в частности, цианобактериальных "матов". В ходе кризиса и после стали складываться новые микробные сообщества, уже не чисто прокариотные, а смешанные – прокариотно-эукариотные. Такие сообщества были более устойчивыми. Таким образом, возможно, величайший в истории Земли кризис "помог" эукариотам занять прочное положение в биосфере точно так же, как "массовое вымирание" на рубеже Мезозоя и Кайнозоя помогло млекопитающим и птицам занять множество ниш, которые раньше были заняты рептилиями (пока Мезозойские динозавровые сообщества не были разрушены кризисом, млекопитающие и птицы были вынуждены оставаться второстепенными, подчиненными группами). Во-вторых, очевидно, что в эпоху чрезвычайно резких (катастрофических) колебаний внешних условий более приспособляемые формы должны были получить огромное адаптивное преимущество, должен был идти "отбор на приспособляемость". |
|
КАК? Общепризнано, что эукариоты появились в результате симбиоза нескольких разновидностей прокариот (бактерий). По-видимому, митохондрии произошли от альфа-протеобактерий (аэробных эубактерий), пластиды – от цианобактерий, а основная клетка – цитоплазма – от какой-то архебактерии. Пока нет общепринятой теории возникновения ядра, цитоскелета, жгутиков. Приведенная ниже подборка рефератов показывает, как много различных гипотез и моделей сейчас обсуждается. Очевидно, имеющиеся фактические данные пока недостаточны для того, чтобы отдать предпочтение какой-то одной из гипотез или выработать новую, которая устроила бы большинство ученых. Моя точка зрения, основанная на анализе белковых доменов архей, бактерий и эукариот, изложена здесь . Согласно предлагаемой модели, ядерно-цитоплазматический компонент будущих эукариот (перед приобретением митохондриальных симбионтов) представлял собой химерный организм, возникший в результате активного поглощения архебактерией чужеродного (в основном эубактериального) наследственного материала из внешней среды. Возможно, главным стимулом для возникновения такой стратегии у архебактерии стал кризис, вызванный переходом цианобактерий к кислородному фотосинтезу. |
Весьма важен для эволюционной теории следующий вопрос: если эукариоты такие прогрессивные и приспособляемые, почему же они не вытеснили "отсталых", "примитивных" прокариот? Почему прокариотический мир продолжает процветать и по сей день? Этот вопрос можно задать и в более общей форме: почему "прогрессивные" новые формы продолжают сосуществовать с "примитивными" старыми, а не вытесняют их? Интересный ответ предложил в своем докладе академик Г.А.Заварзин: "Фокус заключается в том, что новый организм может установить себя только в том случае, если он соответствует существующему сообществу. Если он не соответствует этому сообществу, он в него вписаться не может. Отсюда следует, что старое должно быть сохранено как необходимое предварительное условие для устойчивого существования нового. По большой шкале эволюция происходит не путем замены, но аддитивно, поскольку новые члены выживают только в том случае, если они соответствуют существующим сообществам. Новое накладывается на старое, и старое должно быть сохранено как предварительное условие для существования нового. При этом функциональная структура не меняется, несмотря на частичные субституции... микробы остаются базисом планетарной системы поддержания жизни".
Nature 2000 Jan 6;403(6765):77-80
Bernhard JM, Buck KR, Farmer MA, Bowser SS.
Department of Environmental Health Sciences, School of Public Health, University of South Carolina, Columbia 29208, USA. jmbernha@sph.sc.edu
It is generally agreed that the origin and initial diversification of Eucarya occurred in the late Archaean or Proterozoic Eons when atmospheric oxygen levels were low and the risk of DNA damage due to ultraviolet radiation was high. Because deep water provides refuge against ultraviolet radiation and early eukaryotes may have been aerotolerant anaerobes, deep-water dysoxic environments are likely settings for primeval eukaryotic diversification. Fossil evidence shows that deep-sea microbial mats, possibly of sulphur bacteria similar to Beggiatoa, existed during that time. Here we report on the eukaryotic community of a modern analogue, the Santa Barbara Basin (California, USA). The Beggiatoa mats of these severely dysoxic and sulphidic sediments support a surprisingly abundant protistan and metazoan meiofaunal community, most members of which harbour prokaryotic symbionts. Many of these taxa are new to science, and both microaerophilic and anaerobic taxa appear to be represented. Compared with nearby aerated sites, the Santa Barbara Basin is a 'symbiosis oasis' offering a new source of organisms for testing symbiosis hypotheses of eukaryogenesis.
PMID:
Это хорошо подтверждает идею о том, что эукариоты, как компоненты прокариотных сообществ, могли развиваться в анаэробных или почти анаэробных условиях; что симбиоз с прокариотами мог возникать легко и многократно.
Симбиотический организм, сочетающий симбионтов с принципиально разным метаболизмом (они взаимодополняют друг друга, одни утилизируют "отходы" жизнедеятельности других) – это фактически маленькая компактная экосистема. Которую, к тому же, можно эффективно и слаженно регулировать через единый регуляторный механизм.
Hyperthermophiles in the history of life.
Ciba Found Symp 1996;202:1-10; discussion 11-8
Stetter KO.
Lehrstuhl fur Mikrobiologie, Universitat Regensburg, Germany.
Prokaryotes requiring extremely high growth temperatures (optimum 80-110 degrees
C) have recently been isolated from water-containing terrestrial, subterranean
and submarine high temperature environments. These hyperthermophiles consist of
primary producers and consumers of organic matter, forming unique high
temperature ecosystems. Surprisingly, within the 16S rRNA-based phylogenetic
tree, hyperthermophiles occupy all the shortest and deepest branches closest to
the root. Therefore, they appear to be the most primitive extant organisms. Most
of them (the primary producers) are able to grow chemolithoautotrophically,
using CO2 as sole carbon source and inorganic energy sources, suggesting a
hyperthermophilic autotrophic common ancestor. They gain energy from various
kinds of respiration. Molecular hydrogen and reduced sulfur compounds serve as
electron donors while CO2, oxidized sulfur compounds, NO3- and O2 (only rarely)
serve as electron acceptors. Growth demands of hyperthermophiles fit the
scenario of a hot volcanism-dominated primitive Earth. Similar anaerobic
chemolithoautotrophic hyperthermophiles, completely independent of a sun, could
even exist on other planets provided that active volcanism and liquid water were
present.
PMID: 9243007
Гипертермофилы – вроде самые древние (по кладограммам так получалось). Предварительные соображения об их роли в происхождении жизни. Это уже несколько устарело.
Bioelectrochemistry 2002 Nov;58(1):41-6
Role of lipid
membrane-nucleic acid interactions, DNA-membrane contacts and metal (II) cations
in origination of initial cells and in evolution of prokaryotes to eukaryotes.
Zhdanov RI, Kuvichkin VV, Shmyrina AS, Jdanov AR,
Tverdislov VA.
Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 10,
Pogodinskaya Street, 119121, Moscow, Russia
The problems of the origin of primary cells and eukaryotic cells are discussed
in terms of possible role of interactions between nucleic acids with lipid
membrane according to corresponding original hypothesis. We propose that there
are two main hypotheses of the origin of primary cells: (a) RNA appeared before
proteins and DNA [Nature 213 (1967) 119]; (b) it is needed for the appearance of
a primary cell, the volume closed by the lipid membrane. There was no
information about the ways on how RNA appeared inside that volume for saving the
reaction products around. Our hypothesis suggests that one of the starting
points in the origination of primary cells was the interaction of nucleic acid
and lipid membrane bubbles in the presence of metal (II) ions (which existed in
high concentrations in prebiotic conditions), and this resulted in the enclosing
of the pro-RNAs inside the lipid membrane. This hypothesis is formulated by us
on the basis of experimental biochemical and biophysical studies of the
DNA/RNA-phospholipid vesicles interactions in the presence of metal ions (II)
fulfilled in the Institute of Biomedical Chemistry, RAMS, Moscow and Institute
of Biophysics, RAS, Pushchino. Our belief is that DNA-membrane contacts
(DNA-MCs) played an important role in the prokaryotes-to-eukaryotes transition.
The model of the confluence of four prokaryotic cells may explain the
prokaryotes-to-eukaryotes transition by the way of eukaryotic nuclear pore
formation from prokaryotic Bayer' contacts. The main requirement for the
following fusion of prokaryotic cells must be their mutual orientation. After
possible association, the division of the formed cell is begun. The great
advantage of the model of four prokaryotic cells is the profit in the metabolism
and the possibility of the intensive growth of intercellular membrane
structures.
PMID: 12401569 [PubMed - in process] ; 10664676
Anat Rec 2002 Nov 1;268(3):290-301
Motility proteins and the
origin of the nucleus.
Dolan MF, Melnitsky H, Margulis L, Kolnicki R.
Department of Geosciences, University of Massachusetts, Morrill Science Center,
Amherst 01003, USA. mdolan@geo.umass.edu
Hypotheses on the origin of eukaryotic cells must account for the origin of the
microtubular cytoskeletal structures (including the mitotic spindle,
undulipodium/cilium (so-called flagellum) and other structures underlain by the
9(2)+2 microtubular axoneme) in addition to the membrane-bounded nucleus.
Whereas bacteria with membrane-bounded nucleoids have been described, no
precedent for mitotic, cytoskeletal, or axonemal microtubular structures are
known in prokaryotes. Molecular phylogenetic analyses indicate that the cells of
the earliest-branching lineages of eukaryotes contain the karyomastigont
cytoskeletal system. These protist cells divide via an extranuclear spindle and
a persistent nuclear membrane. We suggest that this association between the
centriole/kinetosome axoneme (undulipodium) and the nucleus existed from the
earliest stage of eukaryotic cell evolution. We interpret the karyomastigont to
be a legacy of the symbiosis between thermoacidophilic archaebacteria and motile
eubacteria from which the first eukaryote evolved. Mutually inconsistent
hypotheses for the origin of the nucleus are reviewed and sequenced proteins of
cell motility are discussed because of their potential value in resolving this
problem. A correlation of fossil evidence with modern cell and microbiological
studies leads us to the karyomastigont theory of the origin of the nucleus.
Copyright 2002 Wiley-Liss, Inc.
PMID: 12382325 [PubMed - in process]
Первые эукариоты возникли в рез. симбиоза ацидотермофильной Археи с подвижной Бактерией. Это объясняет наличие у всех эукариот микротрубчатого цитоскелета – митотическое веретено, жгутики и др. – чего не бывает у прокариот. Древнейший митоз – без разрушения ядерной мембраны.
Int J Syst Evol Microbiol 2002 Jan;52(Pt 1):7-76
The neomuran origin of
archaebacteria, the negibacterial root of the universal tree and bacterial
megaclassification.
Cavalier-Smith T.
Department of Zoology, University of Oxford, UK. tom.cavalier-smith@zoo.ox.ac.uk
Prokaryotes constitute a single kingdom, Bacteria, here divided into two new
subkingdoms: Negibacteria, with a cell envelope of two distinct genetic
membranes, and Unibacteria, comprising the new phyla Archaebacteria and
Posibacteria, with only one. Other new bacterial taxa are established in a
revised higher-level classification that recognizes only eight phyla and 29
classes. Morphological, palaeontological and molecular data are integrated into
a unified picture of large-scale bacterial cell evolution despite occasional
lateral gene transfers. Archaebacteria and eukaryotes comprise the clade
neomura, with many common characters, notably obligately co-translational
secretion of N-linked glycoproteins, signal recognition particle with 7S RNA and
translation-arrest domain, protein-spliced tRNA introns, eight-subunit
chaperonin, prefoldin, core histones, small nucleolar ribonucleoproteins
(snoRNPs), exosomes and similar replication, repair, transcription and
translation machinery. Eubacteria (posibacteria and negibacteria) are
paraphyletic, neomura having arisen from Posibacteria within the new subphylum
Actinobacteria (possibly from the new class Arabobacteria, from which eukaryotic
cholesterol biosynthesis probably came). Replacement of eubacterial
peptidoglycan by glycoproteins and adaptation to thermophily are the keys to
neomuran origins. All 19 common neomuran character suites probably arose
essentially simultaneously during the radical modification of an
actinobacterium. At least 11 were arguably adaptations to thermophily. Most
unique archaebacterial characters (prenyl ether lipids; flagellar shaft of
glycoprotein, not flagellin; DNA-binding protein lob; specially modified tRNA;
absence of Hsp90) were subsequent secondary adaptations to hyperthermophily
and/or hyperacidity. The insertional origin of protein-spliced tRNA introns and
an insertion in proton-pumping ATPase also support the origin of neomura from
eubacteria. Molecular co-evolution between histones and DNA-handling proteins,
and in novel protein initiation and secretion machineries, caused quantum
evolutionary shifts in their properties in stem neomura. Proteasomes probably
arose in the immediate common ancestor of neomura and Actinobacteria. Major gene
losses (e.g. peptidoglycan synthesis, hsp90, secA) and genomic reduction were
central to the origin of archaebacteria. Ancestral archaebacteria were probably
heterotrophic, anaerobic, sulphur-dependent hyperthermoacidophiles;
methanogenesis and halophily are secondarily derived. Multiple lateral gene
transfers from eubacteria helped secondary archaebacterial adaptations to
mesophily and genome re-expansion. The origin from a drastically altered
actinobacterium of neomura, and the immediately subsequent simultaneous origins
of archaebacteria and eukaryotes, are the most extreme and important cases of
quantum evolution since cells began. All three strikingly exemplify De Beer's
principle of mosaic evolution: the fact that, during major evolutionary
transformations, some organismal characters are highly innovative and change
remarkably swiftly, whereas others are largely static, remaining conservatively
ancestral in nature. This phenotypic mosaicism creates character distributions
among taxa that are puzzling to those mistakenly expecting uniform evolutionary
rates among characters and lineages. The mixture of novel (neomuran or
archaebacterial) and ancestral eubacteria-like characters in archaebacteria
primarily reflects such vertical mosaic evolution, not chimaeric evolution by
lateral gene transfer. No symbiogenesis occurred. Quantum evolution of the basic
neomuran characters, and between sister paralogues in gene duplication trees,
makes many sequence trees exaggerate greatly the apparent age of archaebacteria.
Fossil evidence is compelling for the extreme antiquity of eubacteria [over 3500
million years (My)] but, like their eukaryote sisters, archaebacteria probably
arose only 850 My ago. Negibacteria are the most ancient, radiating rapidly into
six phyla. Evidence from molecular sequences, ultrastructure, evolution of
photosynthesis, envelope structure and chemistry and motility mechanisms fits
the view that the cenancestral cell was a photosynthetic negibacterium,
specifically an anaerobic green non-sulphur bacterium, and that the universal
tree is rooted at the divergence between sulphur and non-sulphur green bacteria.
The negibacterial outer membrane was lost once only in the history of life, when
Posibacteria arose about 2800 My ago after their ancestors diverged from
Cyanobacteria.
PMID: 11837318
"Переворот" в классификации жизни. Очень экстравагантная теория. Но здесь много важных фактов, напр., в чем состоит сходство Архей и Эукариот.
Proc Natl Acad Sci U S A 2002 Feb 5;99(3):1420-5
Erratum in: Proc Natl Acad Sci U S A 2002 Apr 2;99(7):4752
The
origin of the eukaryotic cell: a genomic investigation.
Hartman H, Fedorov A.
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
02139, USA. hhartman@mit.edu
We have collected a set of 347 proteins that are found in eukaryotic cells but
have no significant homology to proteins in Archaea and Bacteria. We call these
proteins eukaryotic signature proteins (ESPs). The dominant hypothesis for the
formation of the eukaryotic cell is that it is a fusion of an archaeon with a
bacterium. If this hypothesis is accepted then the three cellular domains,
Eukarya, Archaea, and Bacteria, would collapse into two cellular domains. We
have used the existence of this set of ESPs to test this hypothesis. The
evidence of the ESPs implicates a third cell (chronocyte) in the formation of
the eukaryotic cell. The chronocyte had a cytoskeleton that enabled it to engulf
prokaryotic cells and a complex internal membrane system where lipids and
proteins were synthesized. It also had a complex internal signaling system
involving calcium ions, calmodulin, inositol phosphates, ubiquitin, cyclin, and
GTP-binding proteins. The nucleus was formed when a number of archaea and
bacteria were engulfed by a chronocyte. This formation of the nucleus would
restore the three cellular domains as the Chronocyte was not a cell that
belonged to the Archaea or to the Bacteria.
PMID: 11805300
Еще одна забавная теория происхождения эукариот.
Кроме Архей и Бактерий был еще третий базовый тип ("царство") прокариот – хроноциты. Хроноцит проглотил много Архей и Бактерий и стал Эукариотом. У хроноцита был ЦИТОСКЕЛЕТ, позволявший ему ГЛОТАТЬ другие клетки; сложную внутреннюю с-му мембран, на кот. синтезировались липиды и белки; сложную внутреннюю сигнальную систему.
Однако некие
зачатки цитоскелета все-таки найдены у прокариот: van den Ent F, Amos L,
Lowe J. Bacterial ancestry of actin and tubulin.
Curr Opin Microbiol. 2001 Dec;4(6):634-8. Review. PMID:
BMC Evol Biol 2001;1(1):4
A genomic timescale for
the origin of eukaryotes.
Hedges SB, Chen H, Kumar S, Wang DY, Thompson AS, Watanabe H.
Astrobiology Research Center and Department of Biology, 208 Mueller Laboratory,
The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
sbh1@psu.edu
BACKGROUND: Genomic sequence analyses have shown that horizontal gene transfer
occurred during the origin of eukaryotes as a consequence of symbiosis. However,
details of the timing and number of symbiotic events are unclear. A timescale
for the early evolution of eukaryotes would help to better understand the
relationship between these biological events and changes in Earth's environment,
such as the rise in oxygen. We used refined methods of sequence alignment, site
selection, and time estimation to address these questions with protein sequences
from complete genomes of prokaryotes and eukaryotes. RESULTS: Eukaryotes were
found to evolve faster than prokaryotes, with those eukaryotes derived from
eubacteria evolving faster than those derived from archaebacteria. We found an
early time of divergence (~4 billion years ago, Ga) for archaebacteria and the
archaebacterial genes in eukaryotes. Our analyses support at least two
horizontal gene transfer events in the origin of eukaryotes, at 2.7 Ga and 1.8
Ga. Time estimates for the origin of cyanobacteria (2.6 Ga) and the divergence
of an early-branching eukaryote that lacks mitochondria (Giardia) (2.2 Ga) fall
between those two events. CONCLUSIONS: We find support for two symbiotic events
in the origin of eukaryotes: one premitochondrial and a later mitochondrial
event. The appearance of cyanobacteria immediately prior to the earliest
undisputed evidence for the presence of oxygen (2.4-2.2 Ga) suggests that the
innovation of oxygenic photosynthesis had a relatively rapid impact on the
environment as it set the stage for further evolution of the eukaryotic cell.
PMID: 11580860 [PubMed - as supplied by publisher]
Попытка определить время происхождения эукариот по генным часам. Ничего особо интересного и много явной чуши.
Symbiosis 1985;1:101-24
Symbiosis as a mechanism
of evolution: status of cell symbiosis theory.
Margulis L, Bermudes D.
Department of Biology, Boston University, MA 02215, USA.
Several theories for the origin of eukaryotic (nucleated) cells from prokaryotic
(bacterial) ancestors have been published: the progenote, the direct filiation
and the serial endosymbiotic theory (SET). Compelling evidence for two aspects
of the SET is now available suggesting that both mitochondria and plastids
originated by symbioses with a third type of microbe, probably a
Thermoplasma-like archaebacterium ancestral to the nucleocytoplasm. We conclude
that not enough information is available to negate or substantiate another SET
hypothesis: that the undulipodia (cilia, eukaryotic flagella) evolved from
spirochetes. Recognizing the power of symbiosis to recombine in single
individual semes from widely differing partners, we develop the idea that
symbiosis has been important in the origin of species and higher taxa. The
abrupt origin of novel life forms through the formation of stable symbioses is
consistent with certain patterns of evolution (e.g punctuated equilibria)
described by some paleontologists.
PMID: 11543608
Маргулис. Обзор состояния теории симбиогенеза: пластиды и митохондрии – да, жгутики – под вопросом. Предок цитоплазмы с ядром – Thermoplasma–подобная Архея.
Speculations Sci Technol 1984;7(2):77-81
The origin of the
eukaryotic cell.
Hartman H.
Massachusetts Institute of Technology, Department of Earth, Atmospheric and
Planetary Sciences, Cambridge 02139, USA.
The endosymbiotic hypothesis for the origin of the eukaryotic cell has been
applied to the origin of the mitochondria and chloroplasts. However as has been
pointed out by Mereschowsky in 1905, it should also be applied to the nucleus as
well. If the nucleus, mitochondria and chloroplasts are endosymbionts, then it
is likely that the organism that did the engulfing was not a DNA-based organism.
In fact, it is useful to postulate that this organism was a primitive RNA-based
organism. This hypothesis would explain the preponderance of RNA viruses found
in eukaryotic cells. The centriole and basal body do not have a double membrane
or DNA. Like all MTOCs (microtubule organising centres), they have a structural
or morphic RNA implicated in their formation. This would argue for their origin
in the early RNA-based organism rather than in an endosymbiotic event involving
bacteria. Finally, the eukaryotic cell uses RNA in ways quite unlike bacteria,
thus pointing to a greater emphasis of RNA in both control and structure in the
cell. The origin of the eukaryotic cell may tell us why it rather than its
prokaryotic relative evolved into the metazoans who are reading this paper.
PMID: 11541973
Еще одна теория: клеткой-хозяином при происхождении эукариот был РНК-организм (из РНК-мира). Интересный факт: центриоли, и др. микротрубочные организующие центры содержат структурную РНК (или она участвует в их формировании).
J Mol Evol 2001 May;52(5):419-25
Poxviruses and the origin
of the eukaryotic nucleus.
Takemura M.
Laboratory of Cancer Cell Biology, Research Institute for Disease Mechanism and
Control, Nagoya University School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya
466-8550 Japan. takemura@tsuru.med.nagoya-u.ac.jp
A number of molecular forms of DNA polymerases have been reported to be involved
in eukaryotic nuclear DNA replication, with contributions from alpha-, delta-,
and epsilon-polymerases. It has been reported that delta-polymerase possessed a
central role in DNA replication in archaea, whose ancestry are thought to be
closely related to the ancestor of eukaryotes. Indeed, in vitro experiment shown
here suggests that delta-polymerase has the potential ability to start DNA
synthesis immediately after RNA primer synthesis. Therefore, the question
arises, where did the alpha-polymerase come from? Phylogenetic analysis based on
the nucleotide sequence of several conserved regions reveals that two
poxviruses, vaccinia and variola viruses, have polymerases similar to eukaryotic
alpha-polymerase rather than delta-polymerase, while adenovirus, herpes family
viruses, and archaeotes have eukaryotic delta-like polymerases, suggesting that
the eukaryotic alpha-polymerase gene is derived from a poxvirus-like organism,
which had some eukaryote-like characteristics. Furthermore, the poxvirus's
proliferation independent from the host-cell nucleus suggests the possibility
that this virus could infect non-nucleated cells, such as ancestral eukaryotes.
I wish to propose here a new hypothesis for the origin of the eukaryotic
nucleus, posing symbiotic contact of an orthopoxvirus ancestor with an
archaebacterium, whose genome already had a delta-like polymerase gene.
PMID: 11443345
Еще одна теория: ядро возникло в рез-те взаимодействия Археи с каким-то вирусом.
Am Nat 1999 Oct;154(S4):S146-S163
Reconstructing Early
Events in Eukaryotic Evolution.
Roger AJ.
Resolving the order of events that occurred during the transition from
prokaryotic to eukaryotic cells remains one of the greatest problems in cell
evolution. One view, the Archezoa hypothesis, proposes that the endosymbiotic
origin of mitochondria occurred relatively late in eukaryotic evolution and that
several mitochondrion-lacking protist groups diverged before the establishment
of the organelle. Phylogenies based on small subunit ribosomal RNA and several
protein-coding genes supported this proposal, placing amitochondriate protists
such as diplomonads, parabasalids, and Microsporidia as the earliest diverging
eukaryotic lineages. However, trees of other molecules, such as tubulins, heat
shock protein 70, TATA box-binding protein, and the largest subunit of RNA
polymerase II, indicate that Microsporidia are not deeply branching eukaryotes
but instead are close relatives of the Fungi. Furthermore, recent discoveries of
mitochondrion-derived genes in the nuclear genomes of entamoebae, Microsporidia,
parabasalids, and diplomonads suggest that these organisms likely descend from
mitochondrion-bearing ancestors. Although several protist lineages formally
remain as candidates for Archezoa, most evidence suggests that the mitochondrial
endosymbiosis took place prior to the divergence of all extant eukaryotes. In
addition, discoveries of proteobacterial-like nuclear genes coding for
cytoplasmic proteins indicate that the mitochondrial symbiont may have
contributed more to the eukaryotic lineage than previously thought. As genome
sequence data from parabasalids and diplomonads accumulate, it is becoming clear
that the last common ancestor of these protist taxa and other extant eukaryotic
groups already possessed many of the complex features found in most eukaryotes
but lacking in prokaryotes. However, our confidence in the deeply branching
position of diplomonads and parabasalids among eukaryotes is weakened by
conflicting phylogenies and potential sources of artifact. Our current picture
of early eukaryotic evolution is in a state of flux.
PMID: 10527924 [PubMed - as
supplied by publisher]
Важно: многие думают, что от появления ядра до появления митохондрий прошло долгое время. Но вроде на самом деле все-таки мтх появились очень рано, и общий предок всех современных эукариот имел мтх (а совр. безмитохондриальные эукариоты просто утратили их). Многие гены цитоплазматических белков у безмитохондриальных простейших имеют митохондриальное происхождение.
J Mol Evol 1998 May;46(5):499-507
Comment in:
A new aspect to the origin and
evolution of eukaryotes.
Vellai T, Takacs K, Vida G.
Department of Genetics, Eotvos Lorand University, Muzeum krt. 4/A., Budapest,
H-1088, Hungary. vellai@falco.elte.hu
One of the most important omissions in recent evolutionary theory concerns how
eukaryotes could emerge and evolve. According to the currently accepted views,
the first eukaryotic cell possessed a nucleus, an endomembrane system, and a
cytoskeleton but had an inefficient prokaryotic-like metabolism. In contrast,
one of the most ancient eukaryotes, the metamonada Giardia lamblia, was found to
have formerly possessed mitochondria. In sharp contrast with the traditional
views, this paper suggests, based on the energetic aspect of genome
organization, that the emergence of eukaryotes was promoted by the establishment
of an efficient energy-converting organelle, such as the mitochondrion.
Mitochondria were acquired by the endosymbiosis of ancient alpha-purple
photosynthetic Gram-negative eubacteria that reorganized the prokaryotic
metabolism of the archaebacterial-like ancestral host cells. The presence of an
ATP pool in the cytoplasm provided by this cell organelle allowed a major
increase in genome size. This evolutionary change, the remarkable increase both
in genome size and complexity, explains the origin of the eukaryotic cell
itself. The loss of cell wall and the appearance of multicellularity can also be
explained by the acquisition of mitochondria. All bacteria use chemiosmotic
mechanisms to harness energy; therefore the periplasm bounded by the cell wall
is an essential part of prokaryotic cells. Following the establishment of
mitochondria, the original plasma membrane-bound metabolism of prokaryotes, as
well as the funcion of the periplasm providing a compartment for the formation
of different ion gradients, has been transferred into the inner mitochondrial
membrane and intermembrane space. After the loss of the essential function of
periplasm, the bacterial cell wall could also be lost, which enabled the naked
cells to establish direct connections among themselves. The relatively late
emergence of mitochondria may be the reason why multicellularity evolved so
slowly.
PMID: 9545461 [PubMed - indexed for MEDLINE]
Хорошая статья, логичная. Опять мысль о том, что не было "этапа безмитохондриальных эукариот", что начальным событием было приобретение митохондрий, и это обусловило все последующие преобразования (в т.ч. генома) . Только на этот раз митохондрии выводятся из фотосинтезирующих бактерий!!!
Proc R Soc Lond B Biol Sci 1999 Aug
7;266(1428):1571-7
The origin of eukaryotes:
the difference between
prokaryotic and eukaryotic cells.
Vellai T, Vida G.
Institute for Advanced Study, Collegium Budapest, Hungary.
Eukaryotes have long been thought to have arisen by evolving a nucleus,
endomembrane, and cytoskeleton. In contrast, it was recently proposed that the
first complex cells, which were actually proto-eukaryotes, arose simultaneously
with the acquisition of mitochondria. This so-called symbiotic association
hypothesis states that eukaryotes emerged when some ancient anaerobic
archaebacteria (hosts) engulfed respiring alpha-proteobacteria (symbionts),
which evolved into the first energy-producing organelles. Therefore, the
intracellular compartmentalization of the energy-converting metabolism that was
bound originally to the plasma membrane appears to be the key innovation towards
eukaryotic genome and cellular organization. The novel energy metabolism made it
possible for the nucleotide synthetic apparatus of cells to be no
longer limited by subsaturation with substrates and catalytic components. As a
consequence, a considerable increase has occurred in the size and complexity of
eukaryotic genomes, providing the genetic basis for most of the further
evolutionary changes in cellular complexity. On the other
hand, the active uptake of exogenous DNA, which is general in bacteria, was no
longer essential in the genome organization of eukaryotes. The
mitochondrion-driven scenario for the first eukaryotes explains the chimera-like
composition of eukaryotic genomes as well as the metabolic and cellular
organization of eukaryotes.
PMID: 10467746 [PubMed - indexed for MEDLINE]
J Mol Evol 1998 Nov;47(5):517-30
Symbiosis between
methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: the
syntrophic hypothesis
Moreira D, Lopez-Garcia P.
Laboratoire de Biologie Cellulaire (BC4), Batiment 444, URA CNRS 2227,
Universite Paris-Sud, 91405 Orsay Cedex, France.
We present a novel hypothesis for the origin of the eukaryotic cell, or
eukaryogenesis, based on a metabolic symbiosis (syntrophy) between a
methanogenic archaeon (methanobacterial-like) and a delta-proteobacterium (an
ancestral sulfate-reducing myxobacterium). This syntrophic symbiosis was
originally mediated by interspecies H2 transfer in anaerobic, possibly
moderately thermophilic, environments. During eukaryogenesis, progressive
cellular and genomic cointegration of both types of prokaryotic partners
occurred. Initially, the establishment of permanent consortia, accompanied by
extensive membrane development and close cell-cell interactions, led to a highly
evolved symbiotic structure already endowed with some primitive eukaryotic
features, such as a complex membrane system defining a protonuclear space
(corresponding to the archaeal cytoplasm), and a protoplasmic region (derived
from fusion of the surrounding bacterial cells). Simultaneously,
bacterial-to-archaeal preferential gene transfer and eventual replacement took
place. Bacterial genome extinction was thus accomplished by gradual transfer to
the archaeal host, where genes adapted to a new genetic environment. Emerging
eukaryotes would have inherited archaeal genome organization and dynamics and,
consequently, most DNA-processing information systems. Conversely, primordial
genes for social and developmental behavior would have been provided by the
ancient myxobacterial symbiont. Metabolism would have been issued mainly from
the versatile bacterial organotrophy, and progressively, methanogenesis was
lost.
PMID: 9797402 [PubMed - as supplied by publisher]
еще одна эктравагантная теория симбиогенеза (с участием метанобразующих бактерий)
Antonie Van Leeuwenhoek 1997 Jul;72(1):49-61
Protein phylogenies and
signature sequences: evolutionary relationships within prokaryotes and between
prokaryotes and eukaryotes.
Gupta RS.
Department of Biochemistry McMaster University Hamilton, Ontario, Canada.
The evolutionary relationships within prokaryotes and between prokaryotes and
eukaryotes is examined based on protein sequence data. Phylogenies and common
signature sequences in some of the most conserved proteins point to a close
evolutionary relationship between Archaebacteria and Gram-positive bacteria. The
monophyletic nature and distinctness of the Archaebacterial domain is not
supported by many of the phylogenies. Within Gram-negative bacteria,
cyanobacteria are indicated as the deepest branching lineage, and a clade
consisting of Archaebacteria, Gram-positive bacteria and cyanobacteria is
supported by signature sequences in many proteins. However, the division within
the prokaryotic species, viz. Archaebacteria<-->Gram-positive
bacteria-->Cyanobacteria-->other groups of Gram-negative bacteria, is indicated
to be not very rigid but, instead is an evolutionary continuum. It is expected
that certain species will be found which represent intermediates in the above
transitions. By contrast to the evolutionary relationships within prokaryotes,
the eukaryotic species, which are structurally very different, appear to have
originated by a very different mechanism. Protein phylogenies and signature
sequences provide evidence that the eukaryotic nuclear genome is a chimera which
has received major contributions from both an Archaebacterium and a
Gram-negative bacterium. To explain these observations, it is suggested that the
ancestral eukaryotic cell arose by a symbiotic fusion event between the above
parents and that this fusion event led to the origin of both nucleus and
endoplasmic reticulum. The monophyletic nature of all extant eukaryotic species
further suggests that a 'successful primary fusion' between the prokaryotic
species that gave rise to the ancestral eukaryotic cell took place only once in
the history of this planet.
PMID: 9296263 [PubMed - indexed for MEDLINE]
Все нынешние эукариоты – монофилетичны, происходят от одного предка. Симбиоз Археи с грам-отрицательной бактерией. Ядерный геном – химерный.
Comp Biochem Physiol A 1988;90(2):209-23
The evolutionary origin of
eukaryotic transmembrane signal transduction.
Janssens PM.
Cell Biology and Genetics Unit, University of Leiden, The Netherlands.
1. A comparison was made of transmembrane signal transduction mechanisms in
different eukaryotes and prokaryotes. 2. Much attention was given to eukaryotic
microbes and their signal transduction mechanisms, since these organisms are
intermediate in complexity between animals, plants and bacteria. 3. Signal
transduction mechanisms in eukaryotic microbes, however, do not appear to be
intermediate between those in animals, plants and bacteria, but show features
characteristic of the higher eukaryotes. 4. These similarities include the
regulation of receptor function, adenylate cyclase activity, the presence of a
phosphatidylinositol cycle and of GTP-binding regulatory proteins. 5. It is
proposed that the signal transduction systems known to operate in present-day
eukaryotes evolved in the earliest eukaryotic cells.
PMID: 2900114 [PubMed -
indexed for MEDLINE]
Подтверждается важная идея: что более сложный и совершенный механизм клеточной РЕГУЛЯЦИИ возник уже у самых первых эукариот. И, возможно, в этом их основное преимущество по сравн. с прокариотами.
Izv Akad Nauk Ser Biol 2002 Jul-Aug;(4):501-7
[Article in Russian]
Kuznetsov AP, Lebkova NP.
Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovskii pr. 36, Moscow, 117851 Russia.
The hypothesis of bacterial origin of mitochondria, which existed until the end of the 20th century, has been confirmed on the basis of the current concepts of organic world evolution in the open sea hydrosphere and original data on the entry of bacteria (prokaryotes) in the cells of eukaryotes and their transformation into the mitochondrial mechanism of aerobic energy metabolism. This hypothesis can now be considered as a factually substantiated theory. The process of endocytosis of bacteria in the tissues of eukaryotes, which began at the onset of transition of the anaerobic state of open sea hydrosphere and land atmosphere (Early Proterozoic), is considered as the beginning of symbiotic mode of life of organisms of the Proterozoic and Postproterozoic organic world.
PMID: 12180017
Orig Life Evol Biosph 1995 Jun;25(1-3):251-64
The effects of heavy
meteorite bombardment on the early evolution--the emergence of the three domains
of life.
Gogarten-Boekels M, Hilario E, Gogarten JP.
Dept. Molecular and Cell Biology, University of Connecticut, Storrs 06269-3044.
A characteristic of many molecular phylogenies is that the three domains of life
(Bacteria, Archaea, Eucarya) are clearly separated from each other. The analyses
of ancient duplicated genes suggest that the last common ancestor of all
presently known life forms already had been a sophisticated cellular prokaryote.
These findings are in conflict with theories that have been proposed to explain
the absence of deep branching lineages. In this paper we propose an alternative
scenario, namely, a large meteorite impact that wiped out almost all life forms
present on the early Earth. Following this nearly complete frustation of life on
Earth, two surviving extreme thermophilic species gave rise to the now existing
major groups of living organisms, the Bacteria and Archaea. [The latter also
contributed the major portion to the nucleo-cytoplasmic component of the
Eucarya]. An exact calibration of the molecular record with regard to time is
not yet possible. The emergence of Eucarya in fossil and molecular records
suggests that the proposed late impact should have occurred before 2100 million
years before present (BP). If the 3500 million year old microfossils [Schopf, J.
W. 1993: Science 260: 640-646] are interpreted as representatives of present day
existing groups of bacteria (i.e., as cyanobacteria), then the impact is dated
to around 3700 million years BP. The analysis of molecular sequences suggests
that the separation between the Eucarya and the two prokaryotic domains is less
deep then the separation between Bacteria and Archaea. The fundamental cell
biological differences between Archaea and Eucarya were obtained over a
comparatively short evolutionary distance (as measured in number of substitution
events in biological macromolecules). Our interpretation of the molecular record
suggests that life emerged early in Earth's history even before the time of the
heavy bombardment was over. Early life forms already had colonized extreme
habitats which allowed at least two prokaryotic species to survive a late nearly
ocean boiling impact. The distribution of ecotypes on the rooted universal tree
of life should not be interpreted as evidence that life originated in extremely
hot environments.
PMID: 7708385 [PubMed - indexed for MEDLINE]
Еще одна теория, не очень обоснованная
есть еще мнение о химерном
происхождении самого ЯДРА эукариот – в рез-те слияния Археи с
грам-отрицательной Бактерией (PMID
Symbiosis 1995;18:181-210
The microbial community
of Ophrydium versatile colonies: endosymbionts, residents, and tenants.
Duval B, Margulis L.
Department of Biology, University of Massachusetts, Amherst 01003, USA.
Ophrydium versatile is a sessile peritrichous ciliate (Kingdom Protoctista,
class Oligohymenophora, order Peritrichida, suborder Sessilina) that forms
green, gelatinous colonies. Chlorophyll a and b impart a green color to
Ophrydium masses due to 400-500 Chlorella-like endosymbionts in each peritrich.
Ophrydium colonies, collected from two bog wetlands (Hawley and Leverett,
Massachusetts) were analyzed for their gel inhabitants. Other protists include
ciliates, mastigotes, euglenids, chlorophytes, and heliozoa. Routine
constituents include from 50-100,000 Nitzschia per ml of gel and at least four
other diatom genera (Navicula, Pinnularia, Gyrosigma, Cymbella) that may
participate in synthesis of the gel matrix. Among the prokaryotes are
filamentous and coccoid cyanobacteria, large rod-shaped bacteria, at least three
types of spirochetes and one unidentified Saprospira-like organism.
Endosymbiotic methanogenic bacteria, observed using fluorescence microscopy,
were present in unidentified hypotrichous ciliates. Animals found inside the gel
include rotifers, nematodes, and occasional copepods. The latter were observed
in the water reservoir of larger Ophrydium masses. From 30-46% of incident
visible radiation could be attenuated by Ophrydium green jelly masses in
laboratory observations. Protargol staining was used to visualize the elongate
macronuclei and small micronucleus of O. versatile zooids and symbiotic algal
nuclei. Electron microscopic analysis of the wall of the Chlorella-like symbiont
suggests that although the Ophrydium zooids from British Columbia harbor
Chlorella vulgaris, those from Hawley Bog contain Graesiella sp. The growth
habit in the photic zone and loose level of individuation of macroscopic
Ophrydium masses are interpretable as extant analogs of certain Ediacaran biota:
colonial protists in the Vendian fossil record.
PMID: 11539474 [PubMed - indexed for MEDLINE]
Описано сообщество (типа мата) с эукариотной основой. У ИНФУЗОРИЙ (перитриха и др.) бывают эндосимбионты – эукариотические водоросли (хлорелла) и МЕТАНОБРАЗУЮЩИЕ бактерии!
Опять видим легкость возникновения симбиотических ансамблей (роль основного хозяина играют эукариоты, естественно).
Каждый день скидки. нетбуки . пароварки Днепропетровск . Порядок ухода за кровлей из гибкой черепицы. . вагонка ольха